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The trailing-edge problem for mixed-convection
flow past a horizontal plate

LJUBOMIR SAVI Ć AND HERBERT STEINRÜCK
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology,

Resselgasse 3, 1040 Vienna, Austria

(Received 19 June 2006 and in revised form 30 May 2007)

The flow near the trailing edge of a horizontal plate in a uniform parallel stream
under a small angle of attack in the limit of large Reynolds number and large
Grashof number is considered. Applying the concept of interacting boundary layers,
a triple-deck problem taking the hydrostatic pressure perturbation into account can
be formulated. However, it turns out that the interaction pressure is discontinuous at
the trailing edge and thus new sublayers to resolve the discontinuity are introduced.

1. Introduction
The flow near the trailing edge of a horizontal heated plate which is aligned under

a small angle of attack φ to the oncoming parallel flow with velocity U∞ in the
limit of large Reynolds Re = U∞L/ν and large Grashof Gr = gβ�T L3/ν2 number
will be investigated (figure 1). As usual β , ν and g denote the isobaric expansion
coefficient, the kinematic viscosity and the acceleration due to gravity, respectively.
The difference between the plate temperature and the temperature of the oncoming
fluid is �T and L is the length of the plate. A measure for the influence of the
buoyancy onto the boundary-layer flow along a horizontal plate is the buoyancy
parameter K = Gr Re−5/2 as defined in Schneider & Wasel (1985).

Mixed convection boundary-layer flows along an infinite horizontal surface have
been investigated by several authors (Schneider 1979; Schneider & Wasel 1985;
Merkin & Ingham 1987; Wickern 1991; Daniels 1992; Denier, Duck & Li 2005;
Steinrück 1994; Lagree 1999). In contrast to the mixed convection flow along an
inclined or vertical surface, where the buoyancy force has a component tangential to
the main flow direction, in the case of the mixed convection flow over a horizontal
surface buoyancy influences the boundary-layer flow only indirectly. The temperature
difference across the boundary-layer induces a hydrostatic pressure distribution above
the heated (or cooled) surface. Owing to the change of the temperature (density)
profile along the surface, this hydrostatic pressure distribution has a non-vanishing
component of its gradient tangential to the surface. Thus some authors (e.g. Gersten
& Herwig 1992) speak of indirect free convection. However, it turns out that when the
indirect buoyancy effect accelerates the flow, nothing unexpected happens regarding
the solution of the boundary-layer equations. The modified boundary-layer equations
can be integrated starting from the leading edge downstream. Near the leading edge,
buoyancy effects play almost no role. Thus the velocity and temperature profiles
are close to those of forced convection. Downstream, the indirect buoyancy effect
accelerates the flow and very far downstream, the velocity and temperature profile
tend to the similarity solution of the natural convection flow above a heated plate
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Figure 1. Mixed convection flow past a horizontal plate.

(cf. Schneider & Wasel 1985). This is the case of the flow above a heated plate or below
the lower side of a cooled plate. A forward integration has been done by Steinrück
(2001) and Lagree (2001). However, regarding stability, interesting phenomena occur
which have been investigated by Denier, Stott & Bassom (2001).

In case of adverse buoyancy effects (flow above a cooled plate) it has been expected
that the flow will decelerate and separation will occur. However, when trying to find
out how the boundary-layer flow approaches the point of vanishing wall shear stress
it turned out that the solution of the boundary-layer equations as a parabolic problem
is not well posed. At least a one parametric family of solutions had been found (cf.
Steinrück 1994). Thus it has been concluded that the solution of the boundary-layer
equations might depend on the flow conditions at the trailing edge.

In order to avoid the numerical problems associated with forward integration of
the boundary-layer equations, Denier et al. (2005) used a scheme which takes the
downstream influences into account.

This downstream dependence of the mixed convection boundary-layer flow
equations motivates us to study the behaviour of the flow near the trailing edge
and the global flow field.

Schneider (2005) was the first to investigate the two-dimensional global flow field
induced by mixed convection flow past a horizontal plate. He investigated the problem
in the limit of a vanishing Prandtl number. For technical reasons he embedded the
heated plate in a horizontal channel with a width proportional to lnPe where
Pe denotes the Péclet number. The main idea is that owing to the temperature
perturbation in the wake, a hydrostatic pressure difference builds up across the
wake which has to be compensated by a vortex sheet along the wake inducing a
non-vanishing circulation and thus a lift force onto the plate.

We followed the ideas of Schneider (2005) in Savić & Steinrück (2005) where
we studied the mixed convection flow around a finite plate for a small buoyancy
parameter and a finite Prandtl number. Taking the inclination of the wake into
account and assuming a small inclination, the technical assumption to place the plate
in a horizontal channel could be avoided.

A second aspect of the flow around a finite plate is the analysis of the flow around
the trailing edge. In the limit of large Reynolds number, triple-deck methods first
introduced by Stewartson (1969) and Messiter (1970) have been applied to study the
local flow behaviour at the trailing edge. The flow around a plate with a small angle
of attack to the oncoming parallel flow has been investigated by Brown & Stewartson
(1970) analytically and numerically by Chow & Melnik (1976).

In a first (unpublished) attempt we tried to follow the approach of Chow &
Melnik (1976) and consider the mixed convection trailing-edge problem similar to the
problem of a small angle of attack. However, it turned out that the present problem
has some additional, perhaps even more complicating features, namely a discontinuity
of the interaction pressure at the trailing edge on triple-deck scales. Thus additional
sublayers will be introduced to resolve the pressure discontinuity.
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The starting point of the analysis is the Navier–Stokes equations in dimensionless
form for an incompressible fluid using the Bousinessq approximation to take buoyancy
forces into account, the energy equation, and the continuity equation.

uux + vuy = −px +
1

Re
(uxx + uyy), (1.1a)

uvx + vvy = −py +
1

Re
(vxx + vyy) +

Gr

Re2
θ, (1.1b)

uθx + vθy =
1

Re P r
(θxx + θyy), (1.1c)

ux + vy = 0. (1.1d)

The flow is subjected to the asymptotic boundary conditions

u = 1, v = φ, θ = 0 for x2 + y2 → ∞, (1.2)

and the boundary conditions at the plate

u(x, 0) = v(x, 0) = 0, θ(x, 0) = 1, −1 < x < 0. (1.3)

In addition to the above mentioned dimensionless parameters, the Prandtl number
Pr = ν/a where a is the thermal conductivity and the angle of attack φ enter the
problem. The Prandtl number Pr is assumed to be of order 1.

The global structure of the flow field is shown in figure 1. The flow around the
plate is a potential flow with the exception of the boundary layer at the plate and
the wake where viscous effects play a role. Near the trailing edge of the plate the
boundary layer interacts (locally) with the potential flow, and sublayers according
to triple-deck theory (Stewartson 1969; Messiter 1970) will be introduced. To apply
the triple-deck analysis it turns out that the buoyancy parameter K and the angle
of attack φ have to be of the order Re−1/4. Thus we define the reduced buoyancy
parameter κ = K Re1/4 and the reduced inclination parameter λ= φK

√
Re. We note

that the choice of the magnitude of φ is not only dictated by the trailing-edge analysis,
but it is a consequence of the analysis of the far field (see Savić & Steinrück 2005).

As we will see, the inclination parameter λ will play no role in the trailing-edge
analysis. Only for positive values of λ does an outer potential flow field exist (cf. Savić
& Steinrück 2005). We remark that in case of symmetric flow conditions (upper side
of the plate heated, lower side cooled) the interaction mechanism would allow K to
be larger, namely of order Re−1/8. After a short review of the interaction of the wake
with the potential flow (§ 2) the focus of the present paper will be the analysis of
the flow near the trailing edge (§ 3). A numerical solution reveals that the interaction
pressure is discontinuous at the trailing edge. Thus new sublayers are introduced to
resolve the discontinuity (§ 4).

Before we start the analysis we will give some data for which the following theory
applies. We must choose the Reynolds number Re to be, on one hand, sufficiently
large that the asymptotic theory can be applied, but, on the other hand, to be below
its critical value to ensure laminar flow. Thus Reynolds numbers in the range 104–105

are appropriate. The Grashof number Gr must be chosen such that the reduced
buoyancy parameter is of order one. Thus the range of the Grashof number is from
108 to 1013. Table 1 gives the data for air at room temperature.

In this paper we will use the following notation for the variables in different
layers. Consider a sublayer of the dimensions Re−α/8 in the x- and Re−β/8 in the
y-direction. The corresponding independent variables are denoted by x(α) = xReα/8

and y(β) = yReβ/8.
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ν β �T U L Gr Re K κ

(m2 s−1) (K−1) (K) (m s−1) (m) — — — —

1.513 × 10−5 0.00334 6.87 0.1513 1 109 104 0.1 1
1.513 × 10−5 0.00334 13.74 0.3026 2.5 3.125 × 1010 105 0.00988 0.176

Table 1. Data for mixed convection flow for air at p = 1 bar, T = 21.15 ◦C.

The dependent variable u on that sublayer is denoted by

u(α,β)
(
x(α), y(β)

)
= u

(
x(α)Re−α/8, y(β)Re−β/8

)
. (1.4a)

For the pressure p and the temperature θ , an analogous notation will be used. The
vertical velocity component v will be scaled such that the continuity equation written
in the sublayer variables does not contain a scaling factor. Thus we define

v(α,β)
(
x(α), y(β)

)
= Re(β−α)/8v

(
x(α)Re−α/8, y(β)Re−β/8

)
. (1.4b)

Unless otherwise indicated, we use asymptotic expansions of the form

u(x, y) ∼ u
(α,β)
0

(
x(α), y(β)

)
+ Re−1/8u

(α,β)
1

(
x(α), y(β)

)
+ · · · , (1.5a)

for the horizontal velocity component u and analogous expansions for the pressure
p, and temperature θ and on the (α, β) sublayer. For the vertical velocity component
v we use expansions of the form

v(x, y) ∼ Re(β−α)/8
(
v

(α,β)
0

(
x(α), y(β)

)
+ Re−1/8v

(α,β)
1

(
x(α), y(β)

)
+ · · ·

)
. (1.5b)

on the (α, β) sublayer.

2. The global flow field
Before we begin the discussion of the global flow field we explain the chosen scaling

of the buoyancy parameter K = O(Gr/Re5/2). It is a measure for the hydrostatic
pressure difference induced by the temperature perturbations across the boundary-
layer or the wake, respectively. Thus this hydrostatic pressure difference across the
wake must be compensated by the outer inviscid potential flow. On the other hand,
the potential flow induces an inclination of the wake of order K . The component
of the pressure gradient tangential to the centreline of the wake is given by the
inclination of the wake, which is of order K times the vertical pressure gradient
which is of order K

√
Re, since the thickness of the wake is of order 1/

√
Re. Finally,

we estimate the tangential component of the pressure gradient with K2
√

Re which
must be order one to obtain a meaningful asymptotic limit. Thus we choose K and a
possible inclination φ of the unperturbed parallel flow of order Re−1/4.

In the following we give a brief summary of the analysis of the global flow field
which is characterized by an interaction of the wake with the perturbation of the
potential flow. For details, see Savić & Steinrück (2005).

2.1. Boundary layer and wake

The boundary-layer and wake are of thickness Re−1/2. Since we have to expect an
inclination of the wake, we introduce the stretched vertical coordinate as

y(4) =
(
y − Re−1/4yw

)
Re1/2, (2.1)
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where the centreline of the wake is given by y = Re−1/4yw(x). In the boundary
layer along the plate, −1 <x < 0, we set yw(x) = 0. Perturbations of the pressure are
expected to be of the order of the buoyancy parameter. Thus the pressure can be
expanded in the form

p(x, y) ∼ Re−1/4p
(α,β)
2

(
x(α), y(β)

)
+ · · · . (2.2)

In the potential flow region we have α = β = 0 and in the wake and boundary-layer
(α, β) = (0, 4). Applying the usual scaling for the boundary-layer (and wake) we obtain
for the leading-order terms the x-momentum, continuity and energy equation.

u
(0,4)
0

∂u
(0,4)
0

∂x(0)
+ v

(0,4)
0

∂u
(0,4)
0

∂y(4)
= κy ′

wθ
(0,4)
0 +

∂2u
(0,4)
0

∂y(4)2
, (2.3a)

∂u
(0,4)
0

∂x(0)
+

∂v
(0,4)
0

∂y(4)
= 0, (2.3b)

u
(0,4)
0

∂θ
(0,4)
0

∂x(0)
+ v

(0,4)
0

∂θ
(0,4)
0

∂y(4)
=

1

Pr

∂2θ
(0,4)
0

∂y(4)2
. (2.3c)

The y-momentum equation reduces to

∂p
(0,4)
2

∂y(4)
= κθ

(0,4)
0 . (2.3d)

Owing to the inclination of the wake, the hydrostatic pressure gradient has a non-
vanishing component tangential to the wake. The inclination of the wake has to be
determined from the potential flow. At the plate, y ′

w =0 holds and thus we have, to
leading order, the Blasius solution for the boundary-layer flow,

u ∼ uB = f ′
B

(
y(4)

√
x(0) + 1

)
, θ ∼ θB

(
y(4)

√
x(0) + 1

)
, −1 < x < 0, (2.4)

where fB is the Blasius similarity solution and θB is the corresponding similarity
solution for the temperature profile.

2.2. Potential flow

Integrating (2.3d) with respect to y(4) from −∞ to ∞ we obtain

p
(0,0)
2 (x, 0+) − p

(0,0)
2 (x, 0−) = p

(0,4)
2 (x, +∞) − p

(0,4)
2 (x, −∞) = κγw(x), (2.5)

with

γw(x) =

∫ ∞

−∞
θ (0,4)

(
y(4)

)
dy(4). (2.6)

Equation (2.5) states that the temperature perturbation in the wake induces a
hydrostatic pressure jump across the wake. Thus the potential flow has to satisfy the
pressure jump condition (2.5), the tangential flow condition at the plate v(x, 0) = 0
for −1 <x < 0 and the asymptotic boundary condition (1.2).

Using the notation of complex functions we decompose the potential flow field as
follows:

u − iv = 1 − iφ

√
z

z + 1
+ Re−1/4κ

(
u

(0,0)
2 − iv(0,0)

2

)
+ · · · , (2.7)

with z = x + iy. The first term corresponds to the potential flow around the plate
under an angle of attack φ. The second part is due to a hydrostatic pressure difference



314 L. Savić and H. Steinrück

Symbol Numerical value Definition Reference

a0 0.3321 a0 = f ′′
B (0)

A0 0.8920 a
−1/3
0 Ā(x(3)) ∼ A0(x

(3))1/3, x(3) → ∞ (3.8)

Cp 0.6107 a
3/4
0

dp̄
(3,5)
2

dx(3)
∼ Cp(x(3))−1/3, x(3) → 0+ (3.43)

a1 1.343 a0 a1 = ū′
s(0) Below (3.41)

a2 −0.301 a
7/4
0 a2 = ū′′

s (0) Below (3.41)
c1 −1.644 a−1

0 E ∼ c1η ln η + c2η, η → ∞ (3.27)

c2 (0.724 − 1.644

3
ln a0)a

−1
0 (3.27)

[�p] 5.27 a
−3/4
0 [�p] = −�p(3,5)(0−, 0) (3.35c)

Cu,log −0.168[�p] a
−1/4
0 [�u] = Cu,log ln y(5) + Cu,0, y(5) → 0 (3.40)

Cu,0 (0.042 − 0.168 3
4
ln a0)[�p]a−1/4

0 (3.41)

Table 2. Constants and their definition.

across the wake. Formally, the second part can be considered as being induced by
a vortex distribution of strength κγw(x) along the plate and wake. Whereas in the
wake, the vortex distribution γw is equal to the pressure jump across the wake, the
vortex distribution γP at the plate has to be determined such that the tangential flow
condition holds.

Using (2.7), the scaled inclination of the wake is given by

y ′
w(x) =

λ

κ

√
x

x + 1
+ κv

(0,0)
2 (x, 0). (2.8)

For v
(0,0)
2 an integral representation in terms of the vortex distribution γw in the wake

can be derived. We have

v
(0,0)
2 (x) =

1

2π

√
x

x + 1

∫ ∞

0

γw(ξ )

x − ξ

√
ξ + 1

ξ
dξ, (2.9)

(see Savić & Steinrück 2005). For non-vanishing values of κ , the flow in the wake
and the potential flow correction due to buoyancy have to be solved simultaneously.

Here we summarize the most important results of the wake–potential flow
interaction problem. A detailed analysis and discussion of the solution can be found
in Savić & Steinrück (2005).

(i) Considering the far field of the wake flow, it turns out that solutions exist only
for positive values of λ.

(ii) Solutions exist only for reduced buoyancy parameters κ less than a critical
value κc(λ) which depends on λ. For λ= 1, this critical value is about 0.914.

(iii) The local behaviour of the potential flow field near the trailing-edge is

u
(0,0)
2 (x, 0+) ∼

⎧⎨
⎩

−γw,0

2
− γw,1

2

∣∣x1/3
∣∣, x > 0,

−γw,0

2
− γw,1

∣∣x1/3
∣∣, x < 0,

(2.10)

v
(0,0)
2 (x, 0) ∼ −

√
3

2
γw,1

∣∣x1/3
∣∣, x > 0, (2.11)

with γw,0 = 2
∫ ∞

0
θB(y) dy, γw,1 = −2A0, with A0 given in table 2.
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3. Trailing edge
For the analysis of the flow field near the trailing edge the velocities, pressure and

temperature are decomposed into a symmetric and antisymmetric part

ū(x, y) =
u(x, y) + u(x, −y)

2
, �u =

u(x, y) − u(x, −y)

2Re−1/4κ
. (3.1)

All other dependent variables, with the exception of the vertical velocity component
v, are decomposed accordingly. We decompose the vertical velocity v as

v̄(x, y) =
v(x, y) − v(x, −y)

2
, �v =

v(x, y) + v(x, −y)

2Re−1/4κ
. (3.2)

The definitions (1.4a), (1.4b) and the notation for the expansions (1.5a), (1.5b)
are applied to the symmetric and antisymmetric parts of the flow, pressure and
temperature fields accordingly. We rewrite the basic equation for mixed convection
flow in terms of the symmetric and antisymmetric parts using the boundary-layer
coordinates x(0), y(4)

ū(0,4) ∂ū(0,4)

∂x(0)
+ v̄(0,4) ∂ū(0,4)

∂y(4)
+

κ2

Re1/2

(
�u(0,4) ∂�u(0,4)

∂x(0)
+ �v(0,4) ∂�u(0,4)

∂y(4)

)

= −∂p̄(0,4)

∂x(0)
+

∂2ū(0,4)

∂
(
y(4)

)2
+

1

Re

∂2ū(0,4)

∂
(
x(0)

)2
, (3.3)

1

Re

(
ū(0,4) ∂v̄(0,4)

∂x(0)
+ v̄(0,4) ∂v̄(0,4)

∂y(4)

)
+

κ2

Re3/2

(
�u(0,4) ∂�v(0,4)

∂x(0)
+ �v(0,4) ∂�v(0,4)

∂y(4)

)

= −∂p̄(0,4)

∂y(4)
+

κ2

Re1/2
�θ (0,4) +

1

Re

∂2v̄(0,4)

∂
(
y(4)

)2
+

1

Re2

∂2v̄(0,4)

∂
(
x(0)

)2
. (3.4)

Thus in the equations for the symmetric part, the reduced buoyancy parameter
κ appears in the terms of order Re−1/2. However, these terms do not influence the
equations for leading-order terms of the triple-deck analysis. For the antisymmetric
parts, we obtain

ū(0,4) ∂�u(0,4)

∂x(0)
+ �u(0,4) ∂ū(0,4)

∂x(0)
+ v̄(0,4) ∂�u(0,4)

∂y(4)
+ �v(0,4) ∂ū(0,4)

∂y(4)

= −∂�p(0,4)

∂x(0)
+

∂2�u(0,4)

∂
(
y(4)

)2
+

1

Re

∂2�u(0,4)

∂
(
x(0)

)2
, (3.5)

1

Re

(
ū(0,4) ∂�v(0,4)

∂x(0)
+ �u(0,4) ∂v̄(0,4)

∂x(0)
+ v̄(0,4) ∂�v(0,4)

∂y(4)
+ �v(0,4) ∂v̄(0,4)

∂y(4)

)

= −∂�p(0,4)

∂y(4)
+ θ̄ (0,4) +

1

Re

∂2�v̄(0,4)

∂
(
y(4)

)2
+

1

Re2

∂2�v(0,4)

∂
(
x(0)

)2
. (3.6)

If the symmetric parts of the flow and pressure field are known, the equations for
the antisymmetric parts are linear and independent of κ .

Thus for the leading-order terms of the symmetric part, the classical triple-
deck problem (cf. Stewartson 1969; Messiter 1970) is obtained. For an asymptotic
description, the upper deck (3,3)-region, main deck (3,4)-region and lower deck (3,5)-
region have to be considered. Here we summarize the leading-order terms of the
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asymptotic expansion of the symmetric part of the velocity and pressure field in the
triple deck region:

ū(x, y) =

⎧⎪⎨
⎪⎩

1 + Re−1/4ū
(3,3)
2

(
x(3), y(3)

)
+ · · · ,

uB

(
y(4)

)
+ Re−1/8Ā(x(3))u′

B

(
y(4)

)
+ · · · ,

Re−1/8ū
(3,5)
1

(
x(3), y(5)

)
+ · · · ,

(3.7a)

v̄(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

Re−1/4v̄
(3,3)
2

(
x(3), y(3)

)
+ · · · ,

−Re−1/4Ā′(x(3)
)
uB

(
y(4)

)
+ · · · ,

Re−3/8v̄
(3,5)
1

(
x(3), y(5)

)
+ · · · ,

(3.7b)

p̄(x, y) ∼

⎧⎪⎪⎨
⎪⎪⎩

Re−1/4p̄
(3,3)
2

(
x(3), y(3)

)
+ · · · ,

Re−1/4p̄
(3,4)
2

(
x(3)

)
+ · · · ,

Re−1/4p̄
(3,5)
2

(
x(3)

)
+ · · · ,

(3.7c)

with p̄
(3,3)
2 (x(3), 0) = p̄

(3,4)
2 (x(3)) = p̄

(3,5)
2 (x(3)).

According to Stewartson (1969), the function Ā can be interpreted as the negative
displacement thickness. We recall that the asymptotic behaviour of the negative
displacement thickness Ā is given by

Ā
(
x(3)

)
∼ A0

(
x(3)

)1/3
as x(3) → ∞, (3.8)

with the constant A0 given in table 2. In analogy to the velocity profile of the
symmetric part in the main deck, the temperature profile of the symmetric part is
given as

θ ∼ θB

(
y(4)

)
+ Re−1/8Ā

(
x(3)

)
θ ′
B

(
y(4)

)
. (3.9)

In the following, we will discuss the interaction problem for the antisymmetric part
of the solution.

3.1. The (3,4)-region: main deck

We start with the main deck (α, β) = (3, 4), then using the upper deck (3,3)-layer we
derive the interaction law and finally derive the lower deck (3,5)-layer problem. The
antisymmetric part of the pressure in the main deck can be expanded in the form

�p = �p
(3,4)
0 + Re−1/8�p

(3,4)
1 + · · · . (3.10)

In contrast to (classical) triple-deck problems, the pressure is not constant across the
main deck. The pressure involved in the interaction mechanism is of order Re−1/8, i.e.
�p

(3,4)
1 . The y-momentum equation reduces to

∂�p
(3,4)
0

∂y(4)
= θ̄

(3,4)
0 ,

∂�p
(3,4)
1

∂y(4)
= θ̄

(3,4)
1 , (3.11)

with θ̄
(3,4)
0 = θB and θ̄

(3,4)
1 = Āθ ′

B . Using (3.9), we obtain

�p
(3,4)
0

(
x(3), y(4)

)
=

∫ y(4)

∞
θB

(
ỹ(4)

)
dỹ(4) + �p

(0,0)
0 (0, 0), (3.12a)

�p
(3,4)
1

(
x(3), y(4)

)
= Ā

(
x(3)

)
θB

(
y(4)

)
+ �p

(3,3)
1 (x3, 0). (3.12b)

Note that according to (2.2) and (3.1) we have �p
(0,0)
0 = (1/κ)p(0,0)

2 .
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The expansions for the velocity components �u and �v follow the same lines as
Stewartson (1969) and the solution of the equations of the leading-order terms can
be expressed in terms of an as yet undetermined function �A of x(3), which can be
interpreted as the scaled difference of the negative displacement thicknesses on the
upper and lower side of the plate. The leading-order terms of the antisymmetric part
of the velocity components are given as

�u = lnRe
c1

f ′′
B (0)

f ′′
B

(
y(4)

)
+ �A

(
x(3)

)
f ′′

B

(
y(4)

)
+ C1

(
y(4)

)
+ · · · , (3.13a)

�v = −Re−1/8�A′(x(3)
)
f ′

B

(
y(4)

)
+ · · · . (3.13b)

The term of the magnitude lnRe and the term C1(y
(4)) are both independent of x(3)

and arise from matching the main deck solution, (3,4)-region, with the solution of the
boundary-layer equations, (0,4)-region, for the antisymmetric part of the flow field,
cf. (3.32). The constant c1 will be defined later in (3.27). In table 2, all constants, their
numerical values and their definitions are summarized.

3.2. The (3,3)-region: upper deck

Since the flow in the upper deck is a potential flow with the velocity field

�u − i�v = �u
(0,0)
0 (0, 0) + Re−1/8

(
�u

(3,3)
1

(
x(3), y(3)

)
− i�v

(3,3)
1

(
x(3), y(3)

))
+ · · · , (3.14)

where �u
(0,0)
0 (0, 0) = (1/κ)u2(0, 0+), see (2.7), and �u

(3,3)
1 (x(3), 0) = −�p

(3,3)
1 (x(3), 0),

�v
(3,3)
1 (x(3), 0) = −�A′(x(3)) holds, the pressure �p

(3,3)
1 (x(3), 0) and the negative

displacement thickness �A(x(3)) can be interpreted as the real and imaginary parts of
a complex analytical function �Φ1 evaluated on the real axis. We have

�Φ1

(
x(3), 0

)
= −�p

(3,3)
1

(
x(3), 0

)
+ i�A′(x(3)

)
= −

(
�p

(3,4)
1

(
x(3), 0

)
− Ā

(
x(3)

))
+ i�A′(x(3)

)
. (3.15)

Considering �p
(3,4)
1 (x(3), 0) = 0 for x(3) > 0 and using the asymptotic behaviour of Ā

for x(3) → ∞, we conclude that

�Φ1(z) ∼ (a + ib)z1/3 for z → ∞ (3.16)

holds. The constants a and b are determined by using �A′ → 0 for x(3) → − ∞. They
turn out to be a = A0 and b = −

√
3A0. Thus the asymptotic behaviour of �p

(3,5)
1 and

�A′ is given by

�p
(3,4)
1

(
x(3), 0

)
∼ −2A0

∣∣x(3)
∣∣1/3

for x(3) → −∞, (3.17)

�A′(x(3)
)

∼ −
√

3A0

∣∣x(3)
∣∣1/3

for x(3) → ∞. (3.18)

Note that if �p
(3,5)
1 − Ā(x(3)) tends to different constants for x(3) → ∞ and x(3) → − ∞,

the real part of the complex function �Φ1−(a+ib)z1/3 would tend to different constant
values for x(3) → − ∞ and x(3) → ∞. Thus the next-order term in the expansion of Φ1

for z → ∞ would be of the form iln z, contradicting the requirement that �A′ vanishes
for x(3) → −∞. Thus a possible constant in the expansion of �p

(3,4)
1 for x(3) → −∞ must

be the same constant as in the expansion of �p
(3,4)
1 − Ā for x(3) → ∞. However, using

the fact that �p
(3,4)
1 (x(3)) = 0 for x(3) > 0 and equation (4.4a) in Stewartson (1969) we

conclude that this constant must vanish, thus showing that �Φ1(z) − (a + ib)z1/3 → 0
as z → ∞.
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Finally, the interaction law can be written in the form

�A′(x(3)
)

+
√

3A0h
(
x(3)

)(
x(3)

)1/3

= −
[

1

π

∫ 0

−∞

�p
(3,4)
1 (ξ, 0) + 2A0|ξ |1/3

x(3) − ξ
dξ − 1

π

∫ ∞

−∞

Ā(ξ ) − A0h(ξ )|ξ |1/3
x(3) − ξ

dξ

]
, (3.19)

where h(x) denotes the Heaviside function with h(x) = 1 for x > 0 and h(x) = 0 for
x < 0.

We have written the interaction law in such a form that the singular parts are
separated and the integrand in the Hilbert integral decays sufficiently fast to zero for
x(3) → ± ∞.

The asymptotic behaviour of the vertical velocity component v for x(3) → ∞ and
y(4) → ± ∞ is given by

v = ±v̄ + κRe−1/4�v

∼ −
(
κRe−3/8�A′f ′

B

(
y(4)

)
± Re−2/8Ā′f ′

B

(
y(4)

))
= κRe−3/8

√
3A0

(
x(3)

)1/3
f ′

B

(
y(4)

)
± Re−2/8 1

3
A0

(
x(3)

)−2/3
f ′

B

(
y(4)

)
= κRe−2/8

√
3A0

(
x(0)

)1/3 ± Re−4/8 1
3
A0

(
x(0)

)−2/3
. (3.20)

Thus the vertical component v in the main deck matches with its counterpart in the
potential flow region (2.7), (2.11).

3.3. The lower deck

The equations for the velocity profile in the lower deck are given by the momentum
equation in the x-direction,

ū
(3,5)
1

∂�u
(3,5)
0

∂x(3)
+ �u

(3,5)
0

∂ū
(3,5)
1

∂x(3)
+ v̄

(3,5)
1

∂�u
(3,5)
0

∂y(5)
+ �v

(3,5)
0

∂ū
(3,5)
1

∂y(5)

= −∂�p
(3,5)
1

∂x(3)
+

∂2�u
(3,5)
0(

∂y(5)
)2

, (3.21)

the continuity equation, and the momentum equation in the y-direction which reduces
to

0 = −∂�p
(3,5)
1

∂y(5)
+ θ̄B(0). (3.22)

The boundary conditions are

�u
(3,5)
0

(
x(3), 0

)
= �v

(3,5)
0

(
x(3), 0

)
= 0, x(3) < 0 for the plate, (3.23a)

�u
(3,5)
0

(
x(3), 0

)
= �p

(3,5)
1

(
x(3), 0

)
= 0, x(3) > 0 for the wake. (3.23b)

We remark that changes of the temperature profile in the lower deck are too small
to influence the leading-order terms of the hydrostatic pressure distribution and thus
a discussion of the energy equation is not necessary.

Integrating (3.22), we obtain the pressure difference in the lower deck

p
(3,5)
1

(
x(3), y(5)

)
= θB(0)y(5) + p

(3,5)
1

(
x(3), 0

)
, (3.24)

which matches with the pressure difference in the main deck (3.12). Thus �p
(3,4)
1

(x(3), 0) = �p
(3,5)
1 (x(3), 0) and in the interaction law, (3.19), �p

(3,4)
1 can be replaced by

�p
(3,5)
1 .
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It remains to specify the asymptotic behaviour of the velocity profile for x(3) → −∞
and y(5) → ∞.

Considering the asymptotic behaviour of the pressure �p
(3,5)
1 and of ū

(3,5)
1 ∼ f ′′

B (0)y(5)

for x(3) → −∞, we conclude that the asymptotic behaviour of the flow field �u
(3,5)
0 ,

�v
(3,5)
0 in the lower deck is self-similar. Using a scaled streamfunction E defined by

�u
(3,5)
0 ∼ E′(η) with η =

y(5)∣∣x(3)
∣∣1/3 , (3.25)

we obtain the similarity equation for E

3E′′′ − f ′′
B (0)

(
η2E′′ − ηE′ + E

)
= 2A0, (3.26)

with the boundary conditions E(0) = E′(0) = 0.
The corresponding homogeneous equation has three linearly independent solutions

e1(η) ∼ η ln η for η → ∞, e2(η) = η and e3(η). The third solution, e3, increases at least
exponentially for η → ∞. In order to match the velocity profile with the solution of
the main deck problem e3 has to be eliminated. Thus, we have

E(η) = − 2A0

f ′′
B (0)

+ c1e1(η) + c2e2(η) ∼ − 2A0

f ′′
B (0)

+ c1η ln η + c2η, η → ∞. (3.27)

Since there are two boundary conditions at η =0, the constants c1 and c2 are uniquely
defined. Their values can be found in table 2. The corresponding velocity profile is
shown in figure 4 labelled with x(3) = −∞. The asymptotic behaviour of the velocity
profile for x(3) → − ∞, y(5) → ∞ is given by

�u0

(
x(3), y(5)

)
∼ E′(η) ∼ c1 ln y(5) − c1

3
ln

∣∣x(3)
∣∣ + c1 + c2. (3.28)

To supplement the lower deck equation (3.21) with the correct asymptotic boundary
condition for y(5) → ∞, we need a condition which is satisfied by the derivatives with
respect to y(5) of all linear combinations of the two admissible fundamental solutions
1 and ln y(5) of the linear ordinary differential equation (3.26). Such a condition is
given by

y(5) ∂
2�u

(3,5)
0

∂
(
y(5)

)2
+

∂�u
(3,5)
0

∂y(5)
→ 0 for y(5) → ∞. (3.29)

The negative displacement thickness �A is given by

�A
(
x(3)

)
= lim

y(5) → ∞

(
�u

(3,5)
0 − y(5) ln y(5) ∂�u

(3,5)
0

∂y(5)

)
. (3.30)

The y(5) independent part of the asymptotic behaviour of u
(3,5)
0 can be interpreted as

the asymptotic behaviour of the negative displacement thickness �A. Thus, we have

�A
(
x(3)

)
∼ (c1 + c2) − c1

3
ln

∣∣x(3)
∣∣ as x(3) → −∞. (3.31)

Expanding the boundary layer for the antisymmetric part of the flow field near the
trailing edge 0 < −x(0) � 1, the flow field has a viscous sublayer and an inviscid main
part. The solution of the viscous sublayer is again given by the similarity solution
E. Matching the sublayer with the main part introduces a logarithmic term in the
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inviscid main part. We have:

�u(0,4) =

⎧⎪⎪⎨
⎪⎪⎩

E′

(
y(4)∣∣x(0)

∣∣1/3

)
for

(
y(4)

)3 ∼
∣∣x(0)

∣∣,
C1

(
y(4)

)
− c1

3f ′′
B (0)

ln
∣∣x(0)

∣∣f ′′
B

(
y(4)

)
+ · · · for (y(4))3 	

∣∣x(0)
∣∣, (3.32)

with the asymptotic behaviour of C1 given by C1(y
(4)) ∼ c1 ln y(4) for y(4) → 0.

Matching the inviscid main part of the boundary layer (3.32) yields the anticipated
expansion of the main deck (3.13b).

3.4. Numerical solution

The lower deck equations with the interaction law for the antisymmetric part of
the flow field are solved using Veldman’s iteration method (cf. Veldmann & van de
Vooren 1975). For a better comparison with the numerical results in the existing
literature, the lower deck problem has been rescaled by the following transform:

x(3) = a
−5/4
0 X, y(5) = a

−3/4
0 Y,

ū
(3,5)
1 = a

1/4
0 Ū , v̄

(3,5)
1 = a

3/4
0 V̄ , p̄

(3,5)
1 = a

1/2
0 P̄ , Ā = a

−3/4
0 Ā,

�u
(3,5)
0 = a−1

0 �U, �v
(3,5)
0 = a

−1/2
0 �V, �p

(3,5)
1 = a

−3/4
0 �P, �A = a−2

0 �A,

⎫⎪⎪⎬
⎪⎪⎭
(3.33)

with a0 = f ′′
B (0) = 0.3321 (cf. (3.1.42) in Sychev et al. 1998). Using the transform (3.33),

the lower deck equations for the symmetric and antisymmetric part stay invariant
with the exception of the matching condition of ū(3,5) → a0y

(5) for x(3) → −∞ or y → ∞
which transforms into Ū → Y for X → − ∞ or Y → ∞. In the following, we use the
transformed variables as far as the numerical method is concerned. The solution itself
will be discussed in the original variables.

In the x-direction, a stretched grid has been used with Xi+1 − Xi = f (Xi − Xi−1)
for 1 < i < N , and X−i = −Xi . The minimal step size is X1 − X0 = 0.001 with X0 = 0,
the factor f is f = 1.01 and the number of intervals 2N with N = 400. Thus the
computational domain is (−107, 107). In order to capture the asymptotic behaviour
for x(3) → −∞ correctly, the ‘similarity’ variable

η̃ = a
1/3
0

y(5)(√(
x(3)

)2
+ a

−5/2
0

)1/3
=

Y

(
√

X2 + 1)1/3
(3.34)

is used instead of y(5) as the second independent variable. For the numerical solution,
the asymptotic boundary condition (3.29) has been posed at η̃ = 20.

At X−N , the similarity solution for the velocity profile is described. The momentum
equation (3.21) is discretized with backward differences with respect to X. At each
node Xi , an ordinary differential equation for the velocity profile at Xi and the
value of the difference of the negative displacement thicknesses �A(xi) as additional
unknown is obtained. The system of ordinary differential equations is solved on the
interval (0, 20) for the ‘similarity’ variable η̃ using the ODE solver COLPAR, which
uses a B-spline collocation method (cf. Ascher, Christiansen & Russel 1981).

It turned out that the Veldman iteration method converges only very slowly,
especially near the discontinuity of the pressure �p

(3,5)
1 at x(3) = 0. About 10 000

iterations have been performed to obtain the pressure �p
(3,5)
1 (0−, 0) with an accuracy

of 10−2.
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Figure 2. Negative displacement thickness �A and interaction pressure �p
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Figure 3. Asymptotic behaviour of �A, and �p
(3,5)
1 (x(3), 0) for x(3) → −∞.

Since �p
(3,5)
1 (x(3), 0) = 0 for x(3) > 0, it is sufficient to solve the lower deck equations

(3.21) and (3.29) together with the matching condition (3.30) and the interaction law
(3.19) for x(3) � 0 only. After convergence for �A is obtained, the velocity profile
�u

(3,5)
0 for x(3) > 0 can be determined.

In figure 2, the negative displacement thickness �A and the interaction pressure
�p

(3,5)
1 (x(3), 0) for the antisymmetric part of the flow field are shown.

The asymptotic behaviour for x(3) → − ∞ of �A and �p
(3,5)
1 is shown in figure 3

on a logarithmic and double logarithmic scale, respectively.
The term −�A′ can be considered as the inclination of the near wake. Thus

at the trailing edge, the wake first bends downwards and then turns upwards. For
x(3) → ∞, we have −�A′ ∼

√
3A0(x

(3))1/3 which matches with y ′
w = v

(0,0)
2 (x, 0) for x → 0,

see (2.11).

3.5. The local behaviour of the lower deck velocity field near the trailing edge

The interaction pressure p
(3,5)
1 has a jump discontinuity at the trailing edge x(3) = 0.

As a consequence, the derivative of the displacement thickness �A′ has a logarithmic
singularity at x = 0. To discuss the behaviour of the velocity profile �u(3,5), we
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integrate the momentum equation (3.21) across the jump discontinuity at x(3) = 0. We
use the fact that the symmetric part of the flow field ū

(3,5)
0 , v̄

(3,5)
0 is continuous. Let

[�u]
(
y(5)

)
= �u

(3,5)
0

(
0+, y(5)

)
− �u

(3,5)
0

(
0−, y(5)

)
, (3.35a)

[�p] = �p
(3,5)
1 (0+) − �p

(3,5)
1 (0−), (3.35b)

V
(
y(5)

)
= lim

ε→0

∫ ε

−ε

�v
(3,5)
0

(
x(3), y(5)

)
dx(3), (3.35c)

denote the jump in the �u-component, the jump in the interaction pressure �p
(3,5)
1

and the integral of the �v-component across the jump discontinuity, respectively.
Integrating the momentum equation (3.21) across the discontinuity at x(3) = 0, we
obtain the ordinary differential equation for V

ūsV
′ − V ū′

s = [�p], (3.36)

with the general solution

V
(
y(5)

)
= [�p]

∫ y(5)

∞

ūs

(
y(5)

)
(ūs(ζ ))2

dζ + Būs

(
y(5)

)
, (3.37)

where B is a constant and ūs(y
(5)) = ū

(3,5)
1 (0, y(5)). The jump in �u0 is therefore given

by

[�u]
(
y(5)

)
= −V ′ = −[�p]

1

ūs

(
y(5)

) −
(

[�p]

∫ y(5)

∞

dζ

(ūs(ζ ))2
+ B

)
ū′

s

(
y(5)

)
. (3.38)

Since the displacement thickness �A is continuous, we conclude that [�u] → 0 as
y(5) → ∞ and thus B = 0. Considering the behaviour of [�u] for y(5) → 0, we obtain

[�u] ∼ Cu,log ln y(5) + Cu,0 (3.39)

with

Cu,log = [�p]
a2

a2
1

, (3.40)

Cu,0 = [�p]

(
a2

a2
1

ln a1 − a1

∫ 0

∞
ln us

(
ū′′

s

(ū′
s)

3

)′

dζ

)
, (3.41)

with a1 = ū′
s(0), and a2 = ū′′

s (0) = (dp̄
(3,5)
2 /dx(3))(0−). Their numerical values can be

found in Sychev et al. (1998) or in Chow & Melnik (1976) and are listed together
with the numerical values of Cu,log and Cu,0 in table 2. In order to satisfy the boundary
condition �u

(3,5)
0 (x, 0) = 0, a sublayer has to be introduced.

3.6. A viscous sublayer

According to Stewartson (1969), the symmetric part of the velocity field in the lower
deck also has a sublayer as x(3) → 0+ owing to the abrupt change of the boundary
conditions at x(3) = 0. The horizontal velocity component has the expansion

ū
(3,5)
1 ∼

(
x(3)

)1/3
F ′(ξ ) + ūs

(
y(5)

)
− a1y

(5), 0 < x(3) � 1, (3.42)

with ξ = y(5)/(x(3))1/3, where F is the solution of the boundary-value problem

F ′′′ + 2
3
F F ′′ − 1

3
(F ′)2 = CP , F (0) = F ′(0) = 0, F ′′(∞) = a1, (3.43)

and the constant CP = 0.6107 (see Chow & Melnik 1976) is given by the local
behaviour of the interaction pressure ∂p̄

(3,5)
2 /∂x(3) ∼ CP (x(3))−1/3 for 0 < x � 1.
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In order to compensate the logarithmic behaviour of [�u] we make the following
ansatz for the velocity difference:

�u
(3,5)
0 ∼ �u

(3,5)
0

(
0−, y(5)

)
+ [�u]

(
y(5)

)
+ ln x(3)G′(ξ ) + H ′(ξ )

− Cu,log ln y − Cu,0, for 0 < x(3) � 1, (3.44)

where the functions G and H satisfy the similarity equations

1
3

(
F ′G′ − 2F G′′ − F ′′G

)
= G′′′, G′(0) = 0, (3.45)

1
3

(
F ′H ′ − 2F H ′′ − F ′′H

)
+ F ′G′ − F ′′G = H ′′′, H ′(0) = 0. (3.46)

Asymptotic boundary conditions for G and H will be deduced from matching with the
outer expansion of �u

(3,5)
0 ; but before proceeding, we discuss the limiting behaviour

for F , G and H . According to Stewartson (1969), F ∼ a1ξ
2/2 for ξ → ∞. Thus for

ξ 	 1, (3.45) and (3.46) reduce to

a1

3

(
ξG′ − ξ 2G′′ − G

)
= G′′, (3.47)

a1

3
(ξH ′ − ξ 2H ′′ − H + ξG′ − G) = H ′′. (3.48)

Thus (3.45) has three linearly independent solutions G1, G2 and G3 and with G1 ∼ ξ ,
G2 ∼ ξ ln ξ and G3 → 0 for ξ → ∞. Thus we obtain the following asymptotic boundary
conditions for G and H

G ∼ Cu,log

3
ξ, H ∼ Cu,logξ ln ξ + (Cu,0 − Cu,log)ξ, ξ → ∞. (3.49)

The numerical solutions of the similarity equations (3.45) and (3.46) are shown in
figure 5. Their asymptotic behaviour given by (3.49) is also indicated.

Now the velocity profile �u
(3,5)
0 for x(3) > 0 can be determined. As boundary

condition at the discontinuity, we prescribe the local asymptotic expansion (3.44)
at X =10−3. In figure 4 the velocity profiles for different values of X are shown. The
velocity profiles at X = 0+, 10−5, 10−4 and 10−3 are obtained by evaluating the local
asymptotic expansion (3.44). The other profiles are obtained by numerical integration
of the momentum equation (3.21).
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Figure 5. Similarity functions for velocity profiles in the viscous sublayer and their
asymptotic behaviour (3.49) (dashed lines).

4. Additional sublayers
In order to resolve the discontinuity of the interaction pressure, additional sublayers

will be introduced. An overview with the extensions of the sublayers in the x- and
y-direction is given in figure 7.

4.1. The (4,4)-region

Because of the discontinuity of the difference pressure �p
(3,5)
1 in the lower deck at the

trailing edge, the pressure difference has a discontinuity in the main deck as well. In
the upper deck, the pressure difference �p

(3,3)
1 is singular at (0, 0). Using the calculus

of analytic functions of a complex variable z(3) = x(3) +iy(3) we can infer the behaviour
of �p

(3,3)
1 close to 0. The velocity field in the upper deck is given locally by

�u
(3,3)
1 − i�v

(3,3)
1 ∼ Ā(0) − [�p]

π
i ln z = Ā(0) +

[�p]

π

(
arctan

y

x
− i ln

√
x2 + y2

)
.

(4.1)

Thus the pressure and the derivative of the displacement thickness behave locally as

�p
(3,3)
1 ∼ −Ā(0) − [�p]

π
arctan

y(3)

x(3)
, �A′(x(3)

)
∼ − [�p]

π
ln

∣∣x(3)
∣∣. (4.2)

In order to resolve the discontinuity in the main deck we introduce the (4,4)-
sublayer. The velocity profile has to match with the (3,4)-region (3.13b), (3.13b). Thus
we use the following expansion of the antisymmetric part

�u ∼ lnRe
c1

f ′′
B (0)

f ′′
B

(
y(4)

)
+ �u

(3,4)
0

(
0, y(4)

)
+ Re−1/8 lnRe

[�p]

8π
x(4)f ′′

B

(
y(4)

)
+ Re−1/8�u

(4,4)
1

(
x(4), y(4)

)
+ · · · , (4.3a)

�v ∼ −Re−1/8 lnRe
[�p]

8π
f ′

B

(
y(4)

)
+ Re−1/8v

(4,4)
1

(
x(4), y(4)

)
+ · · · , (4.3b)

�p ∼ �p
(0,4)
0

(
0, y(4)

)
+ Re−1/8�p

(4,4)
1

(
x(4), y(4)

)
+ · · · . (4.3c)

The term of order Re−1/8 lnRe in the vertical velocity component �v arises from
matching with the main deck solution and the logarithmic behaviour of �A′ as
x(3) → 0. As a consequence, a term of the same magnitude must be present in the
expansion of the horizontal velocity component �u. However, in the expansion of
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the pressure �p these ‘logarithmic’ terms are missing. The constant c1 has been
introduced in (3.27).

We obtain the following equations for the leading-order terms

f ′
B

∂�u
(4,4)
1

∂x(4)
+ �v

(4,4)
1 f ′′

B = −∂�p
(4,4)
1

∂x(4)
, (4.4a)

f ′
B

∂�v
(4,4)
1

∂x(4)
= −∂�p

(4,4)
1

∂y(4)
+ θ̄

(0,4)
1 , (4.4b)

∂�u
(4,4)
1

∂x(4)
+

∂�v
(4,4)
1

∂y(4)
= 0. (4.4c)

The flow in the (4,4)-sublayer is inviscid; but in contrast to the main deck, the
y-momentum equation is not degenerate. Eliminating �u

(4,4)
1 and �v

(4,4)
1 , an elliptic

equation for �p
(4,4)
1 can be derived,

f ′
B

[
∂2�p

(4,4)
1

∂
(
x(4)

)2
+

∂2�p
(4,4)
1

∂
(
y(4)

)2
− ∂θ̄

(0,4)
1

∂y(4)

]
+ 2f ′′

B

[
θ̄

(0,4)
1 − ∂�p

(4,4)
1

∂y(4)

]
= 0. (4.5)

The boundary and matching conditions can be expressed as

�p
(4,4)
1 ∼ −|�p|

π
arctan

y(4)

x(4)
+ Ā(0)

(
θB

(
y(4)

)
− 1

)
, (4.6)

for y(4) = 0 or r (4) =
√

(x(4))2 + (y(4))2 → ∞. We note that (4.6) represents the solution
of the Laplace equation. Equation (4.5) becomes the Laplace equation if f ′′

B is zero,
which is the case for y(4) → ∞. The matching condition (4.6) for r (4) → ∞ is obtained
from matching �p

(4,4)
1 with the upper deck solution (4.2) and the main deck solution.

The boundary condition at y(4) = 0, x(4) < 0 follows from (4.4a) and v
(4,4)
1 (x(4), 0) = 0

for x(4) < 0 which in turn is a consequence that �A and thus �u
(3,4)
0 is continuous at

x(3) = 0.
For the numerical solution, we decompose the solution of the linear elliptic partial

differential equation (4.5) into a particular solution and a solution of the homogenous
problem:

�p
(4,4)
1 = −|�p|

π
�p

(4,4)
h

(
y(4), x(4)

)
+ Ā(0)

(
θB

(
y(4)

)
− 1

)
, (4.7)

with �p
(4,4)
h ∼ arctan y(4)/x(4) for (x(4))2 + (y(4))2 → ∞ and �p

(4,4)
h (x(4), 0) = π for x < 0

and �ph(x
(4), 0) = 0 for x > 0.

The local behaviour near the singularity can be discussed by transforming (4.5) to
polar coordinates r (4), ϕ. Expanding �p

(4,4)
h ∼ �ph,0(ϕ)+O(r (4)) for r (4) � 1 we obtain

sinϕ �p′′
h,0 − 2 cosϕ�ph,0 = 0, �ph,0(0) = 0, �ph,0(π) = π, (4.8)

with the solution

�ph,0 = ϕ − 1
2
sin 2ϕ. (4.9)

A numerical solution for �ph is shown in figure 6. The correct asymptotic behaviour
for r (4) → 0 and r (4) → ∞ could be verified.

4.2. The (4,5)-region

Since, in the (4,4)-region, the viscosity has been neglected, a sublayer with respect
to the vertical coordinate y is necessary. Inspecting the momentum equation in the
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Figure 6. Local behaviour of the interaction pressure �p
(4,4)
1 near the trailing edge. The

solution �ph of the homogenous problem, cf. (4.7), is shown.

x-direction it turns out that the thickness of this layer is of the order of Re−2/3. In
our notation this would be a (4, 51

3
)-layer, since 2

3
= 16

3
1
8
. For convenience of notation

we will denote this layer (4,+) and the corresponding vertical variable y(+).
In order to match the velocities in the (4,+)-region to those in the (3,5)-region and

the (4,4)-region, the intermediate (4,5)-scale has to be introduced. The velocity and
pressure field in that region are given by

�u(4,5) ∼ �u
(3,5)
0

(
0−, y(5)

)
+ h

(
x(3)

)
[�u]

(
y(5)

)
+ · · · , (4.10a)

�v ∼ Re−1/8�v(4,5) ∼ Re−1/8�v
(4,4)
1

(
x(3), 0

)
+ · · · , (4.10b)

�p ∼ �p
(0,0)
0 −

∫ ∞

0

θB

(
y(4)

)
dy(4) + Re−1/8h

(
− x(4)

)
[�p] + · · · , (4.10c)

where h(x) is the Heaviside function.

4.3. The (4, 51
3
)-region

Since the velocity profile in the (4,5)-region does not satisfy the boundary condition
�u =0 at y = 0, it is necessary to introduce an additional sublayer. Since the pressure
is constant there, we can find a similarity solution for the velocity field,

�u ∼ − 1
8
lnRe G′(ξ+) + ln x(4)G′(ξ+) + H ′(ξ+), (4.11a)

�v ∼ 1

24
Re−1/6 ln Re

(
x(4)

)−2/3
(G − ξ+G′)

+ Re−1/6
(
x(4)

)−2/3

(
−1

3
ln x(4)(G − ξ+G′) −

(
G +

1

3
H − ξ+

3
H ′

))
, (4.11b)

where G and H are the same similarity functions as in (3.44) and ξ+ = y(+)/(x(4))1/3.

4.4. The (5,5)-region

In the (5,5) sublayer of the lower deck, a similar analysis as in the (4,4)-region applies.
We use the expansion

�u ∼ �u
(5,5)
0

(
x(5), y(5)

)
, �v ∼ �v

(5,5)
0

(
x(5), y(5)

)
, (4.12a)

�p ∼ �p
(0,4)
0 (0, 0) + Re−1/8�p

(5,5)
1 (x(5), y(5)), (4.12b)
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and obtain the equations for the leading-order terms

ūs

∂�u
(5,5)
0

∂x(5)
+ �v

(5,5)
0 ū′

s = −∂�p
(5,5)
1

∂x(5)
, (4.13a)

ūs

∂�v
(5,5)
0

∂x(5)
= −∂�p

(5,5)
1

∂y(5)
+ θB(0), (4.13b)

∂�u
(5,5)
0

∂x(5)
+

∂�v
(5,5)
0

∂y(5)
= 0, (4.13c)

where ūs(y
(5)) = ū

(3,5)
1 (0, y(5)) denotes the velocity profile of the lower deck solution of

the symmetric part at the trailing edge. Integrating (4.13a)–(4.13c) with respect to x(5)

over (−∞, ∞) and defining

V
(
y(5)

)
=

∫ ∞

−∞
�v

(5,5)
0

(
x(5), y(5)

)
dx(5), (4.14)

the ordinary differential equation (3.36) for V can be re-derived. Manipulating (4.13a)–
(4.13c), an elliptic differential equation for �p

(5,5)
1 can be deduced,

ūs

(
∂2�p

(5,5)
1

∂
(
x(5)

)2
+

∂2�p
(5,5)
1

∂
(
y(5)

)2

)
− 2ū′

s

(
∂�p

(5,5)
1

∂y(5)
− θB(0)

)
= 0, (4.15)

with the matching and boundary conditions

�p
(5,5)
1 = − [�p]

π

(
ϕ − 1

2
sin 2ϕ

)
+ θB(0)y(5), (4.16)

where ϕ = arctan y(5)/x(5) for r (5) → ∞, ϕ = 0 and ϕ = π, respectively. Moreover, (4.16)
also describes the local behaviour for r (5) → 0 since ūs/ū

′
s → 1 for both y(5) → ∞ and

y(5) → 0.
The pressure �p

(5,5)
1 is everywhere continuous except at the trailing edge x(5) = 0,

y(5) = 0. Thus we have resolved the pressure discontinuity to a single point on triple-
deck scales.

If the pressure field �p
(5,5)
1 is known, we can determine the velocities in the (5,5)-

layer. We insert the continuity equation (4.13c) into (4.13a) and obtain the first-order
differential equation for �v

(5,5)
0 ,

−ūs

∂�v
(5,5)
0

∂y(5)
+ �v

(5,5)
0 ū′

s = −∂�p
(5,5)
1

∂x(5)
. (4.17)

Integration of (4.17) and matching with the (4,4)-region yields

�v
(5,5)
0 = ūs

(
y(5)

) ∫ y(5)

∞

1

ū2
s

∂�p
(5,5)
1

∂x(5)
dỹ(5). (4.18)

Using that ūs(0) = 0 and ∂�p
(5,5)
1 /∂x(5) = 0 for x(5) < 0, we conclude that �v(5,5)(x(5,0)) =

0 for x(5) < 0. Using (4.13c), we obtain

�u
(5,5)
0 = −u′

s

(
y(5)

) ∫ y(5)

∞

1

ū2
s

(
�p

(5,5)
1

(
x(3), ỹ(5)

)
− �p

(3,5)
1

(
0−, ỹ(5)

))
dỹ(5)

− 1

ūs

(
�p

(5,5)
1

(
x(3), y(5)

)
− �p

(3,5)
1

(
0−, y(5)

))
+ �u

(3,5)
0

(
0−, y(5)

)
. (4.19)
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The asymptotic behaviour of �u(5,5) for y(5) → 0 is given by

�u
(5,5)
0 ∼

{
C̃u,0

(
x(5)

)
, x(5) < 0,

Cu,log ln y(5) + C̃u,0

(
x(5)

)
, x(5) > 0,

(4.20)

where Cu,log is defined in (3.40), C̃u,0(−∞) = 0 and C̃u,0(∞) = Cu,0.

4.5. The (5, 5 2
3
)-region

In order to satisfy the boundary condition �u =0 at y = 0, a sublayer has to be
introduced. The appropriate scaling factor for the vertical coordinate turns out to be
Re17/24. Thus we define the stretched vertical coordinate y(∗) = Re17/24y = Re1/12y(5).
Note in the notation (1.4a), (1.4b) we would have to write y(17/3). Instead of the
superscript (17/3) we write the superscript (*).

Matching with the (5,5)-region requires an asymptotic expansion of the horizontal
velocity component of the form

�u(5,∗) ∼
{

− 1
4
lnRe G′(ξ ∗) + �u

(5,∗)
0

(
x(5), y(∗)

)
+ · · · , x > 0,

�u
(5,∗)
0

(
x(5), y(∗)

)
+ · · · , x < 0,

(4.21a)

�v = Re−1/12�v(5,∗)

∼

⎧⎪⎨
⎪⎩

�v
(5,5)
0

(
x(5), 0

)
+ Re−1/12

((
x(5)

)−2/3

12
(G − ξ ∗G′) lnRe + �v

(5,∗)
0

)
, x > 0,

Re−1/12�v
(5,∗)
0 + · · · , x < 0,

(4.21b)

with ξ ∗ = y(∗)/(x(5))1/3 and the function G is the solution of the similarity equation

(3.45) and the asymptotic boundary condition (3.49). The velocity field �u
(5,∗)
0 , �v

(5,∗)
0

satisfies the linearized boundary-layer equation

ū
(5,∗)
1.5

∂�u
(5,∗)
0

∂x(5)
+ �u

(5,∗)
0

∂ū
(5,∗)
1.5

∂x(5)
+ v̄

(5,∗)
1.5

∂�u
(5,∗)
0

∂y(∗)
+ �v

(5,∗)
0

∂ū
(5,∗)
1.5

∂y(∗)
=

∂2�u
(5,∗)
0(

∂y(∗)
)2

(4.22)

and the continuity equation with

ū ∼ Re−3/16ū
(5,∗)
1.5 + · · · , ū

(5,∗)
1.5 =

{
a1y

(∗), x < 0,(
x(5)

)1/3
F ′(ξ ∗), x > 0,

(4.23)

where the function F is the solution of (3.42).
The index 1.5 of ū reflects the fact that the expansion of the symmetric part of the

velocity field in this layer is of the order (Re1/8)1.5 = Re3/16.
For a complete resolution of the discontinuity, an analysis of the (6,6)-region

where the complete Navier–Stokes equations are the governing equations for the
leading-order terms would be necessary.

5. Summary and conclusions
An analysis of the mixed convection flow around a finite horizontal plate under

a small angle of attack in the limit of large Reynolds number and small buoyancy
effects has been performed. Surprising results have been obtained regarding the flow
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Figure 7. The sublayers and their thickness in the x- and y-direction near the trailing edge.
The dotted line represents the domain where the velocity profile is represented by the similarity
solution ln x(3)G′(ξ ) + H ′(ξ ), (3.44).

on the global scales and regarding the local analysis of the flow near the trailing edge
as well. The main results are as follows.

(i) Solutions of the global flow problem exist only if the reduced buoyancy
parameter κ is smaller than a critical value which depends on the reduced inclination
parameter λ.

(ii) The local analysis of the mixed convection flow near the trailing edge revealed
that the usual triple deck-structure of the flow near the trailing edge is not sufficient to
describe the local flow behaviour. It turned out that the interaction pressure and the
velocity profile in the lower deck are discontinuous at the trailing edge on triple-deck
scales.

(iii) In order to resolve these discontinuities, new sublayers have been introduced
and discussed. A schematic overview of the sublayers is given in figure 7.

(iv) However, a pressure singularity at the trailing edge remains even on the (5,5)-
sublayer which can probably be resolved only on scales where the full Navier–Stokes
equations apply.

(v) Although on triple-deck scales there is a pressure jump at the trailing edge
on the scales of the potential flow (leading order) the pressure is continuous at the
trailing edge satisfying the Kutta condition.

(vi) In the case of the flow of a fluid with a positive expansion coefficient past a
heated plate, the fluid flows at the trailing edge first downwards then the wake turns,
as expected, upwards.

For an experimental verification of the presented analysis for the global flow, one
has to place the plate in a channel with lateral walls to prevent a flow around the
lateral edges of the plate and the vortex sheet in the wake. We expect that two-
dimensional local theory will be a good approximation of the flow field near the
trailing edge sufficiently far away from the lateral edges.

The theory presented here can be carried over to the case when the hydrostatic
pressure gradient is induced by the concentration of a resolved substance in the fluid
instead of the temperature perturbations. In that case, the large Grashof number
which is necessary to have a meaningful influence of buoyancy can be obtained more
easily.

Though the local flow properties at the trailing-edge of the mixed convection flow
past a horizontal plate are clarified, there are still open questions concerning the
global flow field. For example what does the three-dimensional mixed convection flow
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around a finite plate look like? What type of singularity occurs when approaching
the critical value of the buoyancy parameter and what happens beyond the critical
value? This will be the subject of further investigations.
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